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NOTES APRIL 11-15

Theorem 1. Suppose that f : N¥ — N is primitive recursive. Then there is
a A1 formula ¢(xg, ..., xk—1,Y), such that for all ay,...,ax_1,b in N,

F(@r, e @) = b iff A b Blars e a1, b.

Proof. (Sketch) Fix a primitive recursive function f, and suppose for sim-
plicity that f : N — N (the general case is similar). Say f(0) = d and for all
n, f(n+1) = g(f(n),n) here g is primitive recursive. By induction, we can
assume that g(x,y) = z is equivalent to a Ay formula.

Below we are use the Chinese Remainder Theorem to talk about the
sequence C.

First we show that f(x) =y can be represented by a 3; formula:
f(n) = b iff there is a sequence ¢ = (cy, ...cp), such that ¢o = d and for all
i <n,ci+1=g9g(c,i) and ¢, = b.

Next, we show that f(x) =y can be represented by a 3; formula:
f(n) = b iff for every sequence ¢ = (cy, ...cp,), such that ¢g = d and for all
i <n, ci+1 = g(c,1), we have that ¢, = b.

It follows that f(z) = y is equivalent to a A; formula. O

Corollary 2. There is a Ay formulas ¢ezp(z,y, x), such that for all natural
numbers a, b, c, a® = ¢ iff A = despla, b, c].

Proof. This is because f(a,b) = a® is primitive recursive and the above
theorem. 0

Definition 3. The collection of partial recursive functions are all partial
functions f : N¥ —~ N build up from the primitive recursive functions, using
composition and the “minimization” operation:

if g - NFH1 5 N s total recursive, and

f(x1,...,xp) = least y such that g(x1, ..., vk, y) = 0,
then f is partial recursive.

Theorem 4. If f : N* —~ N is partial recursive, then there is a 1 formula
o(xo, ..., k), such that, for all a,...,ax_1,b in N,

flat,...,ap—1) = b iff A = dlas, ..., ar_1,0].

Proof. By induction on the complexity of f. If f is primitive recursive, this
follows from the above theorem.
Suppose that f = g o h, and by the inductive hypothesis, both g, h are
equivalent to X; formulas ¢4, ¢p, respectively. Then f(ai,...,ar) = b iff
1
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g(h(ay,...,ar)) = biff Jx(h(aq, ...,ar) = zAg(x) = b) iff Fz(ép(aq, ..., ag, ©)A

bg (7,0)).
Note that the latter is X, since both ¢4, ¢}, are 31 and we only used an
extra existential quantifier. O

Corollary 5. If f : N¥ — N is total recursive, then there is a A1 formula
(o, ..., xk), such that, for all ay,...,ax—1,b in N,

flar,...;ap—1) = b iff A = dlas, ..., ax—1,0].
Proof. By the above theorem, there is a ¥; formula ¢(x, ..., zx), such that,
for all ay,...,ax—1,bin N, f(ai,...,ax—1) =0 iff A = ¢[aq, ..., ax_1, ]
But then f(ai,...,ax—1) # b iff 3c(c # b A f(a1,...,ax—1) = c) iff there is
¢ # b such that 2 = ¢[ai, ...,ax—1,c] iff A |=3c(c #bA ¢lay, ..., ak—1,b]).
It follows that both ¢ and —¢ are X1, and this means that ¢ is Ay.
O

Let A C N*; the characteristic function of A, y 4 is given by xa(z) =0
if v € Aand ya(xz) =1if x ¢ A. Next we give two equivalent definitions of
a recursive set.

Definition 6. A set A C N* is recursive iff its characteristic function x 4
is recursive iff A= {{a1,...,ax) | A = ¢lai,...,ax]} for some Ay formula ¢.

Examples of recursive sets: any finite set; the set of all prime numbers;
the set of all triples (a, b, c) such that a® = c.

Definition 7. A set A C N¥ is recursively enumerable (r.e.) iff A =
{{a1,...,ar) | A E ¢lai,...,ax]} for some X1 formula ¢.

The following two propositions are left as exercises.

Proposition 8. Suppose A C N¥. If both A and its complement N\ A are
r.e, then A is recursive.

Proposition 9. Let A C N¥.

(1) If A is the domain of a partial recursive function, then A is r.e.;
(2) If A is the range of a partial recursive function, then A is r.e.

CODING SEQUENCES

Next we define how to code sequences in a primitive recursive way. First,
we order the primes: 2,3,5,7,11,13,17,19, 23, ... and label them pq, p1, p2, ...
For example the least prime pg is 2; p1 = 3,p2 = 5, pg = 23, etc.

Proposition 10. The function f(n) = p, is primitive recursive.
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Proof. We have to write f in a primitive recursive way. Recall the proof that
there are infinitely many primes: Otherwise, if pg, ..., p, enumerate all of the
primes, we take pg-p1-...pn+1 and argue it is a prime to get a contradiction.
That means that if we know that the first n primes (counting from zero) are
PO, -, Pn, if p is the next prime, then p < pg-p1-...pp +1 < pPT1 4 1. So we
have:
. 1(0) =2,
e f(n+1) = the least prime p < f(n)"*! + 1 such that p > f(n).
This is a primitive recursive definition, since multiplication is primitive
recursive and we are only doing a bounded search for the next prime. (If
the search was unbounded, then f would be recursive but not necessarily
primitive recursive.)
To be even more precise, let g(a,n) = the least prime p such that a <
p < a™! +1. Since exponentiation, addition and computing if something is
a prime are all primitive recursive, and we only use bounded quantifiers, g
is also primitive recursive. Then

e f(0) =2,
o fln+1)=g(f(n),n).

O

Definition 11. Given a sequence of natural numbers @ = {(ag, ay, ..., ax), we
— ap+1 a1+1 ar+1
code a by the number py®™ " - p{* " - .p T

Note that not every number codes a sequence, but any two different se-
quence are coded by different numbers. Examples:

e The sequence (2,1,0) is coded by 22*1.31+1 .50+l — 23 .32. 5 —
8-9-5=360;

e The sequence (0) is coded by 20! = 2;

e The sequence (0,0,2) is coded by 2 -3 - 53 = 6 - 125 = 750;

e The sequence (9,0) is coded by 291 . 391 = 1024 - 3 = 3072;

And here are some examples of numbers that Do Not code sequences:
7,14,100,42. Why? In order for a number a to code a sequence, if a prime
p divides a, then all primes less than p must also divide a. For example,
14 = 2 -7, the prime 7 divides it, but 3 and 5 do not. That is why 14 does
not code a sequence.

Next we write down some formulas that will be useful later.

(1) Ao: ¢ain(y,x) is such that: a divides b iff 2 = ¢gip[a, b];
(2) Ao: Pprime(x) is such that: p is a prime iff A = Gprime[p];
¢pm’me($) is 2> 1AVy < 2(dain(y,z) = y=1).
(3) A1 ¢eup(a, b, c), where a® = c iff A |= pezpla, b, c].
This is because f(a,b) = a’ is primitive recursive, and so it is
equivalent to a A; formula.
(4) Av: Gth—prime(p,n) is such that: p = p, i.e. the n-th prime iff A |=
¢th—p7‘ime [n, P] .
We can find such a formula because f(n) = p,, is primitive recursive.
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(5) A1: ¢eode() is such that: a codes a sequence iff A = Peogelal.
¢code($) is

Vy <aVz < y([‘bprime(iU) A d)pm'me(z) A Baiv(Y, )] = Gdin(2,T)).

(6) A1z @eode(, 1, c) is such that: a codes a sequence with i-th element
¢ iff A = Peogeal. In this case we simply write z; = c.
We have to define this formula to say that x codes a sequence and
if p is the ith prime, i.e. p = p;, then pT! divides z but p¢+? does
not:

Beode (T, €) 18 Peode(T) N Ip <
(Buh_prime(p,3) A By < 2)(3z < =+ 3)

[¢exp(p7 c+1, y) A Qbexp(pv c+ 2, Z) A QZ)div(ya x) A _‘(stiv(zv x)])

In the above definition we use the variable y to denote p°t! and
the variable z to denote p°*2. Note that since z = y-p and y < z, we
must have that z < 22. Since all of the new quantifiers are bounded
the complexity of ¢eoge(, 1, ) is Aj.



