MATH 430, SPRING 2022

NOTES APRIL 11-15

Theorem 1. Suppose that $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is primitive recursive. Then there is $a \Delta_{1}$ formula $\phi\left(x_{0}, \ldots, x_{k-1}, y\right)$, such that for all $a_{1}, \ldots, a_{k-1}, b$ in \mathbb{N},

$$
f\left(a_{1}, \ldots, a_{k-1}\right)=b \text { iff } \mathfrak{A} \models \phi\left[a_{1}, \ldots, a_{k-1}, b\right] .
$$

Proof. (Sketch) Fix a primitive recursive function f, and suppose for simplicity that $f: \mathbb{N} \rightarrow \mathbb{N}$ (the general case is similar). Say $f(0)=d$ and for all $n, f(n+1)=g(f(n), n)$ here g is primitive recursive. By induction, we can assume that $g(x, y)=z$ is equivalent to a Δ_{1} formula.

Below we are use the Chinese Remainder Theorem to talk about the sequence \vec{c}.

First we show that $f(x)=y$ can be represented by a Σ_{1} formula: $f(n)=b$ iff there is a sequence $\vec{c}=\left\langle c_{0}, \ldots c_{n}\right\rangle$, such that $c_{0}=d$ and for all $i<n, c_{i+1}=g\left(c_{i}, i\right)$ and $c_{n}=b$.

Next, we show that $f(x)=y$ can be represented by a Σ_{1} formula: $f(n)=b$ iff for every sequence $\vec{c}=\left\langle c_{0}, \ldots c_{n}\right\rangle$, such that $c_{0}=d$ and for all $i<n, c_{i+1}=g\left(c_{i}, i\right)$, we have that $c_{n}=b$.

It follows that $f(x)=y$ is equivalent to a Δ_{1} formula.
Corollary 2. There is a Δ_{1} formulas $\phi_{\text {exp }}(x, y, x)$, such that for all natural numbers $a, b, c, a^{b}=c$ iff $\mathfrak{A} \models \phi_{\text {exp }}[a, b, c]$.

Proof. This is because $f(a, b)=a^{b}$ is primitive recursive and the above theorem.

Definition 3. The collection of partial recursive functions are all partial functions $f: \mathbb{N}^{k} \rightharpoonup \mathbb{N}$ build up from the primitive recursive functions, using composition and the "minimization" operation:
if $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is total recursive, and

$$
f\left(x_{1}, \ldots, x_{k}\right)=\text { least } y \text { such that } g\left(x_{1}, \ldots, x_{k}, y\right)=0
$$

then f is partial recursive.
Theorem 4. If $f: \mathbb{N}^{k} \rightharpoonup \mathbb{N}$ is partial recursive, then there is a Σ_{1} formula $\phi\left(x_{0}, \ldots, x_{k}\right)$, such that, for all $a_{1}, \ldots, a_{k-1}, b$ in \mathbb{N},

$$
f\left(a_{1}, \ldots, a_{k-1}\right)=b \text { iff } \mathfrak{A} \models \phi\left[a_{1}, \ldots, a_{k-1}, b\right] .
$$

Proof. By induction on the complexity of f. If f is primitive recursive, this follows from the above theorem.

Suppose that $f=g \circ h$, and by the inductive hypothesis, both g, h are equivalent to Σ_{1} formulas ϕ_{g}, ϕ_{h}, respectively. Then $f\left(a_{1}, \ldots, a_{k}\right)=b$ iff
$g\left(h\left(a_{1}, \ldots, a_{k}\right)\right)=b$ iff $\exists x\left(h\left(a_{1}, \ldots, a_{k}\right)=x \wedge g(x)=b\right)$ iff $\exists x\left(\phi_{h}\left(a_{1}, \ldots, a_{k}, x\right) \wedge\right.$ $\left.\phi_{g}(x, b)\right)$.

Note that the latter is Σ_{1}, since both ϕ_{g}, ϕ_{h} are Σ_{1} and we only used an extra existential quantifier.

Corollary 5. If $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is total recursive, then there is a Δ_{1} formula $\phi\left(x_{0}, \ldots, x_{k}\right)$, such that, for all $a_{1}, \ldots, a_{k-1}, b$ in \mathbb{N},

$$
f\left(a_{1}, \ldots, a_{k-1}\right)=b \text { iff } \mathfrak{A} \models \phi\left[a_{1}, \ldots, a_{k-1}, b\right]
$$

Proof. By the above theorem, there is a Σ_{1} formula $\phi\left(x_{0}, \ldots, x_{k}\right)$, such that, for all $a_{1}, \ldots, a_{k-1}, b$ in $\mathbb{N}, f\left(a_{1}, \ldots, a_{k-1}\right)=b$ iff $\mathfrak{A} \models \phi\left[a_{1}, \ldots, a_{k-1}, b\right]$

But then $f\left(a_{1}, \ldots, a_{k-1}\right) \neq b$ iff $\exists c\left(c \neq b \wedge f\left(a_{1}, \ldots, a_{k-1}\right)=c\right)$ iff there is $c \neq b$ such that $\mathfrak{A} \vDash \phi\left[a_{1}, \ldots, a_{k-1}, c\right]$ iff $\mathfrak{A} \vDash \exists c\left(c \neq b \wedge \phi\left[a_{1}, \ldots, a_{k-1}, b\right]\right)$.

It follows that both ϕ and $\neg \phi$ are Σ_{1}, and this means that ϕ is Δ_{1}.

Let $A \subset \mathbb{N}^{k} ;$ the characteristic function of A, χ_{A} is given by $\chi_{A}(x)=0$ if $x \in A$ and $\chi_{A}(x)=1$ if $x \notin A$. Next we give two equivalent definitions of a recursive set.

Definition 6. A set $A \subset \mathbb{N}^{k}$ is recursive iff its characteristic function χ_{A} is recursive iff $A=\left\{\left\langle a_{1}, \ldots, a_{k}\right\rangle \mid \mathfrak{A} \models \phi\left[a_{1}, \ldots, a_{k}\right]\right\}$ for some Δ_{1} formula ϕ.

Examples of recursive sets: any finite set; the set of all prime numbers; the set of all triples $\langle a, b, c\rangle$ such that $a^{b}=c$.

Definition 7. A set $A \subset \mathbb{N}^{k}$ is recursively enumerable (r.e.) iff $A=$ $\left\{\left\langle a_{1}, \ldots, a_{k}\right\rangle|\mathfrak{A}|=\phi\left[a_{1}, \ldots, a_{k}\right]\right\}$ for some Σ_{1} formula ϕ.

The following two propositions are left as exercises.
Proposition 8. Suppose $A \subset \mathbb{N}^{k}$. If both A and its complement $\mathbb{N}^{k} \backslash A$ are r.e, then A is recursive.

Proposition 9. Let $A \subset \mathbb{N}^{k}$.
(1) If A is the domain of a partial recursive function, then A is r.e.;
(2) If A is the range of a partial recursive function, then A is r.e.

CODING SEQUENCES

Next we define how to code sequences in a primitive recursive way. First, we order the primes: $2,3,5,7,11,13,17,19,23, \ldots$ and label them $p_{0}, p_{1}, p_{2}, \ldots$ For example the least prime p_{0} is $2 ; p_{1}=3, p_{2}=5, p_{8}=23$, etc.

Proposition 10. The function $f(n)=p_{n}$ is primitive recursive.

Proof. We have to write f in a primitive recursive way. Recall the proof that there are infinitely many primes: Otherwise, if p_{0}, \ldots, p_{n} enumerate all of the primes, we take $p_{0} \cdot p_{1} \cdot \ldots p_{n}+1$ and argue it is a prime to get a contradiction. That means that if we know that the first n primes (counting from zero) are p_{0}, \ldots, p_{n}, if p is the next prime, then $p \leq p_{0} \cdot p_{1} \cdot \ldots p_{n}+1 \leq p_{n}^{n+1}+1$. So we have:

- $f(0)=2$,
- $f(n+1)=$ the least prime $p \leq f(n)^{n+1}+1$ such that $p>f(n)$.

This is a primitive recursive definition, since multiplication is primitive recursive and we are only doing a bounded search for the next prime. (If the search was unbounded, then f would be recursive but not necessarily primitive recursive.)

To be even more precise, let $g(a, n)=$ the least prime p such that $a<$ $p \leq a^{n+1}+1$. Since exponentiation, addition and computing if something is a prime are all primitive recursive, and we only use bounded quantifiers, g is also primitive recursive. Then

- $f(0)=2$,
- $f(n+1)=g(f(n), n)$.

Definition 11. Given a sequence of natural numbers $\vec{a}=\left\langle a_{0}, a_{1}, \ldots, a_{k}\right\rangle$, we code \vec{a} by the number $p_{0}^{a_{0}+1} \cdot p_{1}^{a_{1}+1} \cdot \ldots p_{k}^{a_{k}+1}$.

Note that not every number codes a sequence, but any two different sequence are coded by different numbers. Examples:

- The sequence $\langle 2,1,0\rangle$ is coded by $2^{2+1} \cdot 3^{1+1} \cdot 5^{0+1}=2^{3} \cdot 3^{2} \cdot 5=$ $8 \cdot 9 \cdot 5=360$;
- The sequence $\langle 0\rangle$ is coded by $2^{0+1}=2$;
- The sequence $\langle 0,0,2\rangle$ is coded by $2 \cdot 3 \cdot 5^{3}=6 \cdot 125=750$;
- The sequence $\langle 9,0\rangle$ is coded by $2^{9+1} \cdot 3^{0+1}=1024 \cdot 3=3072$;

And here are some examples of numbers that Do Not code sequences: $7,14,100,42$. Why? In order for a number a to code a sequence, if a prime p divides a, then all primes less than p must also divide a. For example, $14=2 \cdot 7$, the prime 7 divides it, but 3 and 5 do not. That is why 14 does not code a sequence.

Next we write down some formulas that will be useful later.
(1) $\Delta_{0}: \phi_{\text {div }}(y, x)$ is such that: a divides b iff $\mathfrak{A} ~=\phi_{\text {div }}[a, b]$;
(2) $\Delta_{0}: \phi_{\text {prime }}(x)$ is such that: p is a prime iff $\mathfrak{A} \vDash \phi_{\text {prime }}[p]$;
$\phi_{\text {prime }}(x)$ is $x>1 \wedge \forall y<x\left(\phi_{\text {div }}(y, x) \rightarrow y=1\right)$.
(3) $\Delta_{1}: \phi_{\text {exp }}(a, b, c)$, where $a^{b}=c$ iff $\mathfrak{A} \vDash \phi_{\text {exp }}[a, b, c]$.

This is because $f(a, b)=a^{b}$ is primitive recursive, and so it is equivalent to a Δ_{1} formula.
(4) $\Delta_{1}: \phi_{\text {th-prime }}(p, n)$ is such that: $p=p_{n}$ i.e. the n-th prime iff $\mathfrak{A} \models$ $\phi_{\text {th-prime }}[n, p]$.
We can find such a formula because $f(n)=p_{n}$ is primitive recursive.
(5) $\Delta_{1}: \phi_{\text {code }}(x)$ is such that: a codes a sequence iff $\mathfrak{A} \vDash \phi_{\text {code }}[a]$.
$\phi_{\text {code }}(x)$ is
$\forall y \leq x \forall z<y\left(\left[\phi_{\text {prime }}(y) \wedge \phi_{\text {prime }}(z) \wedge \phi_{\text {div }}(y, x)\right] \rightarrow \phi_{\text {div }}(z, x)\right)$.
(6) $\Delta_{1}: \phi_{\text {code }}(x, i, c)$ is such that: a codes a sequence with i-th element c iff $\mathfrak{A}=\phi_{\text {code }}[a]$. In this case we simply write $x_{i}=c$.
We have to define this formula to say that x codes a sequence and if p is the i th prime, i.e. $p=p_{i}$, then p^{c+1} divides x but p^{c+2} does not:
$\phi_{\text {code }}(x, i, c)$ is $\phi_{\text {code }}(x) \wedge \exists p \leq x$ $\left(\phi_{\text {th-prime }}(p, i) \wedge(\exists y \leq x)(\exists z<x \cdot x)\right.$
$\left.\left[\phi_{\exp }(p, c+1, y) \wedge \phi_{\exp }(p, c+2, z) \wedge \phi_{\operatorname{div}}(y, x) \wedge \neg \phi_{\operatorname{div}}(z, x)\right]\right)$.
In the above definition we use the variable y to denote p^{c+1} and the variable z to denote p^{c+2}. Note that since $z=y \cdot p$ and $y \leq x$, we must have that $z<x^{2}$. Since all of the new quantifiers are bounded the complexity of $\phi_{\text {code }}(x, i, c)$ is Δ_{1}.

